Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots

نویسندگان

  • Juthamas Chaiwanon
  • Zhi-Yong Wang
چکیده

The spatiotemporal balance between stem cell maintenance, proliferation, and differentiation determines the rate of root growth and is controlled by hormones, including auxin and brassinosteroid (BR). However, the spatial actions of BR and its interactions with auxin remain unclear in roots. Here, we show that oppositely patterned and antagonistic actions of BR and auxin maintain the stem cell balance and optimal root growth. We discover a pattern of low levels of nuclear-localized BR-activated transcription factor BZR1 in the stem cell niche and high BZR1 levels in the transition-elongation zone. This BZR1 pattern requires local BR catabolism and auxin synthesis, as well as BR signaling. Cell-type-specific expression of a constitutively active form of BZR1 confirms that the high and low levels of BZR1 are required for the normal cell behaviors in the elongation zone and quiescent center (QC), respectively. Comparison between BR-responsive, BZR1-targeted, auxin-responsive, and developmental zone-specific transcriptomes indicates that BZR1 mostly activates its target genes expressed in the transition-elongation zone, but represses genes in the QC and surrounding stem cells, and that BR and auxin have overall opposite effects on gene expression. Genetic and physiological interactions support that a balance between the antagonistic actions of BR and auxin is required for optimal root growth. These results demonstrate that the level and output specificity of BR signaling are spatially patterned and that, in contrast to their synergism in shoots, BR and auxin interact antagonistically in roots to control the spatiotemporal balance of stem cell dynamics required for optimal root growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles.

The plant vascular system provides transport and support capabilities that are essential for plant growth and development, yet the mechanisms directing the arrangement of vascular bundles within the shoot inflorescence stem remain unknown. We used computational and experimental biology to evaluate the role of auxin and brassinosteroid hormones in vascular patterning in Arabidopsis. We show that...

متن کامل

Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components

In Arabidopsis thaliana, besides several key transcription factors and chromatin modifiers, phytohormones auxin and cytokinin play pivotal role in shoot and root meristem maintenance, and lateral root (LR) development. Sirtinol, a chemical inhibitor of Sir2 proteins, is known to promote some auxin induced phenotypes in Arabidopsis. However, its effect on plant stem cell maintenance or organ for...

متن کامل

The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products.

Plant sterols are structural components of cell membranes that provide rigidity, permeability, and regional identity to membranes. Sterols are also the precursors to the brassinosteroid signaling molecules. Evidence is accumulating that specific sterols have roles in pattern formation during development. COTYLEDON VASCULAR PATTERNING1 (CVP1) encodes C-24 STEROL METHYLTRANSFERASE2 (SMT2), one of...

متن کامل

The Cyclic Nucleotide-Gated Channel CNGC14 Regulates Root Gravitropism in Arabidopsis thaliana

In plant roots, auxin inhibits cell expansion, and an increase in cellular auxin levels on the lower flanks of gravistimulated roots suppresses growth and thereby causes downward bending. These fundamental features of root growth responses to auxin were first described over 80 years ago, but our understanding of the underlying molecular mechanisms has remained scant. Here, we report that CYCLIC...

متن کامل

Involvement of PACLOBUTRAZOL RESISTANCE6/KIDARI, an Atypical bHLH Transcription Factor, in Auxin Responses in Arabidopsis

Auxin regulates nearly all aspects of plant growth and development including cell division, cell elongation and cell differentiation, which are achieved largely by rapid regulation of auxin response genes. However, the functions of a large number of auxin response genes remain uncharacterized. Paclobutrazol Resistance (PRE) proteins are non-DNA binding basic helix-loop-helix transcription facto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015